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Abstract— Load imbalance leads to an increasing waste of
resources as an application is scaled to more and more processors.
Achieving the best parallel efficiency for a program requires
optimal load balancing which is a NP-hard problem. However,
finding near-optimal solutions to this problem for complex
computational science and engineering applications is becoming
increasingly important. Charm++, a migratable objects based
programming model, provides a measurement-based dynamic
load balancing framework. This framework instruments and
then migrates over-decomposed objects to balance computational
load and communication at runtime. This paper explores the
use of graph partitioning algorithms, traditionally used for
partitioning physical domains/meshes, for measurement-based
dynamic load balancing of parallel applications. In particular, we
present repartitioning methods developed in a graph partitioning
toolbox called SCOTCH that consider the previous mapping
to minimize migration costs. We also discuss a new imbalance
reduction algorithm for graphs with irregular load distributions.
We compare several load balancing algorithms using micro-
benchmarks on Intrepid and Ranger and evaluate the effect of
communication, number of cores and number of objects on the
benefit achieved from load balancing. New algorithms developed
in SCOTCH lead to better performance compared to the METIS
partitioners for several cases, both in terms of the application
execution time and fewer number of objects migrated.

Keywords-load balancing; graph partitioning; instrumentation;
communication-aware; performance

I. INTRODUCTION

Long-running scientific simulations can be performed in a
reasonable time only by means of parallel processing because
of the amount of computation and data that they involve. To
do so, data and their associated computations are distributed
across several interconnected processing elements (processors)
which work in parallel. Accessing data on remote processors
requires inter-processor communication. Consequently, the ef-
ficient use of such distributed memory parallel machines re-
quires spreading the computation load evenly across different
processors and minimizing the communication overhead.

When the tasks/processes that perform the computation
co-exist for the entire duration of the parallel program, the
load balance problem can be modeled as a constrained graph
partitioning problem on an unoriented graph. The vertices of
this process graph represent the computation to be performed
and its edges represent inter-process communication. In case of
MPI applications, the number of processes is the same as the

number of processors, p and the problem of mapping processes
to processors is reduced to a communication-minimizing map-
ping problem. In the case of other programming models, such
as CHARM++ [1], ParalleX [2], FG-MPI [3], Adaptive MPI [4]
and others, computation is over-decomposed into fine-grained
tasks or objects, where the number of such tasks, n is much
greater than p. For applications written in these programming
models, the problem of mapping objects to processors can be
viewed as the partitioning and mapping of a graph of n vertices
to p physical processors. The aim is to assign the same load
to all processors and to minimize the edge cut of the graph,
that is, the sum of the weights of edges whose ends are on
different physical processors.

Although the problem of partitioning communicating ob-
jects to processors appears similar to that of partitioning
large unstructured meshes to processors, the differences are
significant and lead to major algorithmic changes. The most
significant difference is that the number of objects per pro-
cessor is of the order of ten in load balancing, whereas for
meshes, the number is closer to a million.

In this paper, we evaluate the deployment of static mapping
and graph repartitioning, traditionally used for partitioning
physical domains/meshes, for balancing load dynamically in
over-decomposed parallel applications. We have chosen a spe-
cific programming model, CHARM++ and a graph partitioning
library, SCOTCH [5] for implementing the new algorithms
and heuristics. However, the techniques described here are
generally applicable to the programming models mentioned
above and use of other graph partitioning libraries [6], [7].

CHARM++ includes a mature load balancing framework
which provides a friendly user-interface for incorporating
external load balancing algorithms. For applications in which
computational loads tend to persist over time, the framework
supports measurement-based load balancing. It records ob-
ject loads for previous iterations to influence load balancing
decisions for the future and hence can adapt to slow or
abrupt but infrequent changes in load. Based on different
partitioning and repartitioning algorithms in SCOTCH, we have
developed ScotchLLB and ScotchRefineLB for comprehensive
(fresh assignment of all objects to processors) and refinement-
based load balancing respectively.

We discuss modifications to existing algorithms in SCOTCH



to make them more suitable for scenarios encountered in load
balancing. This presents a distinct set of challenges compared
with mesh partitioning, which is what graph partitioners are
usually designed for. In addition to evaluating the classical
recursive bipartitioning method in SCOTCH, we discuss two
new algorithms in this paper: 1. a k-way multilevel framework
for repartitioning graphs that takes the object migration cost
into account and tries to minimize the time spent in migrations,
and 2. a new algorithm for balancing graphs with irregular load
distributions and localized concentration of vertices with heavy
loads, a scenario which is not handled well by the classical
recursive bipartitioning method.

We present a comprehensive comparative evaluation of
ScotchLB and ScotchRefineLB with other existing (greedy,
refinement and communication-aware) load balancing algo-
rithms in CHARM++ and with a METIS-based load balancer.
We evaluate the algorithms based on various metrics for suc-
cess: 1. reduction in execution time of the application, 2. time
spent in load balancing, 3. number of objects migrated, and
4. reduction in inter-processor communication. We use three
micro-benchmarks with different computation-communication
characteristics and present results for runs on Intrepid (Blue
Gene/P) and Ranger (an Opteron-Infiniband cluster). New
algorithms developed in SCOTCH lead to better performance
compared to the METIS partitioners for several cases, both in
terms of the application execution time and fewer number of
objects migrated.

The rest of the paper is organized as follows: Section II
introduces measurement-based load balancing in CHARM++
and describes the existing load balancers in the framework.
Section III presents existing and new partitioning algorithms
developed in SCOTCH that are well suited for load balancing.
A comparative evaluation of SCOTCH-based load balancers is
presented in Section IV and Section VI summarizes the work.

II. DYNAMIC COMMUNICATION-AWARE LOAD BALANCING

An intelligent load balancing algorithm must take into
account, both the characteristics of the parallel application
and the topology of the target architecture. The application
information includes task processing costs (computational
loads) and the amount of communication between tasks. The
architecture information includes the processing speeds of the
cores and the costs of communication between different cores
and nodes. When the loads and communication patterns do
not change during program execution, load balancing can be
done statically at program startup. A mapping is called static
if it is computed prior to the execution of the program and
is never modified at run-time. However, if the load and/or
communication patterns change dynamically, the mapping
must be done at runtime (often called graph repartitioning or
dynamic load balancing).

Graph partitioning has been used in the past to statically
partition computational tasks to processors [8]-[10]. However,
with increasingly complex multi-physics simulations and het-
erogeneous architectures, there is a growing need for dynamic
load balancing during program execution. This requires input

from the application about the changing computational loads
and communication patterns. Zoltan [11]-[13] is one such
framework for dynamic load balancing of parallel applications
that uses hypergraph partitioners to balance entities indicated
by the application. CHARM++ also includes an automatic
dynamic load balancing framework. It assists the application
by instrumenting the work units or objects in the application
at runtime and making this information available for any load
balancing strategy to use.

A. The CHARM++ load balancing framework

Applications written in CHARM++ over-decompose their
computation into virtual processors or objects called “chares”
which are then mapped on to physical processors by the run-
time system. This initial static mapping can be changed as the
execution progresses by migrating objects to other processors
if the simulation leads to a load imbalance. This is facilitated
by a load balancing framework that instruments the application
to obtain the computational loads and the communication
graph of the objects and uses them to make informed decisions
for migrating objects [14]. Measurement-based load balancing
is effective when the load and communication pattern of
the application either change slowly, or change abruptly but
infrequently. In these situations, data from the recent past is
a good predictor of the near future. For other situations, the
application can provide performance estimates for the objects
to supplant the measurements.

There are several in-built load balancing strategies in
CHARM++ that can be used by application developers, some
of which are described here for completeness (and for the
benefit of the reader to understand the results better):

e GreedyLB: A comprehensive load balancer based on the
greedy heuristic that maps the heaviest objects on to the
least loaded processors until the load of all processors is
close to the average load.

o RefinelLB: A refinement load balancer that migrates
objects from processors with greater than average load
(starting with the most overloaded processor) to those
with less than average load. The aim of this strategy is
to reduce the number of objects migrated.

¢ RefineCommLB: A refinement strategy similar to Re-
fineLB that also considers the communication between
different objects when trying to choose the best under-
loaded processor to place an object on.

o MetisLB: A strategy that passes the load information and
the communication graph to METIS, a graph partitioning
library, and uses the recursive graph partitioning algo-
rithm in it for load balancing.

The CHARM++ runtime also encourages application devel-
opers to write application-specific load balancing strategies
or use external libraries for the task. For this, it provides an
easy interface to write new load balancers. Figure 1 presents
the data structures that provide information useful for a load
balancing strategy when making migration decisions. The
runtime instruments a few time steps of the application before
load balancing and this information is available in the form of
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two data structures. The ProcArray (on the left) provides the
load on each processor for the previously instrumented time
steps to identify the overloaded and underloaded processors in
the application. The ObjGraph (on the right) is an adjacency
list representation of the directed communication graph. The
vector of vertices contains the load of each vertex in the graph.
Each vertex also has pointers to two edge lists, one for the
vertices it sends messages to and the other for those that it
receives messages from. Each edge has information about the
number of messages exchanged between a pair of vertices and
also the total number of bytes exchanged.

Using the above mentioned information provided by the
CHARM++ runtime, a load balancing strategy can be imple-
mented that returns a new assignment for the vertices in the
ObjGraph. This information is then used by the runtime to
migrate objects for the subsequent time steps. This setup fa-
cilitates the use of external load balancing algorithms/libraries
for measurement-based dynamic load balancing of parallel
applications, since they do not have to deal with the mechanics
of instrumentation and object migration.

III. SCOTCH: A SOFTWARE FOR GRAPH PARTITIONING AND
LOAD BALANCING

ScoTcH [5] is a software project developed at the Lab-
oratoire Bordelais de Recherche en Informatique (LaBRI)
of the Université Bordeaux 1, and now within the Bacchus
project-team at INRIA Bordeaux Sud-Ouest. Its goal is to
provide efficient graph partitioning heuristics for scientific
computing, making them available to the community as a
software toolbox. This toolbox is called SCOTCH in the
general case, while its parallel subset is called PT-SCOTCH
(for “Parallel and Threaded SCOTCH”). In this paper, we will
only evaluate the sequential version of SCOTCH because the
graph repartitioning algorithms that we discuss here are only
available in the sequential version to date. This is feasible
because for load balancing, the size of the graph where each
vertex is a coarse-grained object is small — typically, 10-20
times larger than the number of processors.

ObiGraph —>
std::vector<Vertex> vertices

getVertexId()
getVertexLoad()
getCurrentPe()

Vertex —>

getNewPe()
setNewPe()
isMigratable()

getNeighborld()
e —>

A user friendly API for plugging in new load balancing strategies in CHARM++

A. Static mapping methods in SCOTCH

Although SCOTCH also deals with combinatorial problems
such as sparse matrix ordering, its first purpose was to study
static mapping by means of graph theory, using a “divide and
conquer” approach. Its core static mapping algorithm, the Dual
Recursive Bipartitioning (DRB) algorithm [15], recursively
allocates subsets of processes to subsets of processors. It starts
by considering a set of processors, also called the domain,
containing all the processors of the target machine, and with
which all the processes to be mapped are associated. At
each step, the algorithm bipartitions an unprocessed domain
into two disjoint subdomains, and calls a graph bipartitioning
algorithm to split the subset of processes associated with the
domain across the two subdomains. When the processor graph
is a complete graph, this process degenerates into simple
recursive graph bipartitioning, as all processors in the domain
are at the same distance from each other.

Bipartitions are computed using a multilevel framework.
The graph to be bipartitioned is repeatedly coarsened by
matching neighboring vertices, down to a coarse graph of
hundred vertices. Then, an initial partition is computed on
the coarse graph obtained, and this bipartition is refined back,
from coarser to finer graphs, to yield a bipartition of the
original graph [16], [17]. In order to preserve locality, initial
bipartitions are computed by way of greedy “graph growing”
heuristics. First an appropriate seed vertex is chosen in the
graph to bipartition. Then these algorithms perform breadth-
first traversal of the graph, accumulating all the traversed
vertices in the first partition, and stop when enough load is
collected. The remaining vertices are then assigned to the
second partition [18].

In order to ensure that the granularity of the solution is that
of the original graph and not that of the coarsest graph, the
refined partitions are smoothened at every level. The partitions
are refined at each level by using local optimization algorithms
such as Kernighan-Lin [19] (KL) or Fiduccia-Mattheyses [20]
(FM). Because these algorithms perform vertex movements
across the current boundary only, they can only help smoothen



the frontier, but cannot perform large-scale changes of the
provided partition. The original KL algorithm reduces the cut
by performing swaps of vertices, and is consequently quadratic
in time with respect to the number of vertices because of vertex
pairing routines. The FM algorithm considers single vertex
movements only, and is therefore quasi-linear in time, which
is why it is mostly used. However, this may lead to problems
for graphs with irregular load distributions, as we will see in
Section III-C.

B. Repartitioning methods in SCOTCH

A new feature of SCOTCH that is experimented with in
this paper, is the ability to compute re-partitions of a graph,
based on an existing partition. This scheme is referred to as
refinement load balancing in CHARM++. For repartitioning,
every vertex of the graph to be remapped is associated with
a fictitious edge that connects it to a fictitious vertex that
represents the old partition, like in [21]. Hence, this edge is
cut when the vertex changes partitions and remains intact if
the vertex remains in its old partition. Doing so allows us
to integrate the migration cost within the existing edge cut
minimization process. All of the fictitious edges are weighted,
with a weight that represents the cost of migrating the vertex
to another partition. Since edge dilation is accounted for in the
edge cut cost function, moving a vertex to a distant processor
costs more than moving it to a nearby one.

These repartitioning algorithms have been embedded in a
new k-way multilevel framework. Instead of doing coarsening
and uncoarsening for computing every bipartition, the original
graph is coarsened once, down to a size equal to a few
tens of vertices times the number of expected parts. The
aforementioned recursive bipartitioning process is called on
this coarsest graph, after which the obtained k-way repartition
is refined back to the original graph. This is done using k-
way local optimization algorithms such as a k-way variant of
the FM algorithm. This variant stores every possible move of
boundary vertices to their neighboring partitions, sorting the
potential gains in a Fibonacci heap structure.

All of the above algorithms have been adapted so as to
account for these fictitious edges, most of the time without
having to create and store them individually, thus reducing
the memory footprint of the repartitioning process [22]. For
instance, fictitious edges are not necessary in the k-way
coarsening process, but are created when computing the k-
way band graph that is used by local optimization algorithms
(see [23] for a description of band graphs).

C. A new algorithm for reducing load imbalance

All of the aforementioned algorithms were designed for
graphs whose vertex load distribution is regular and not
severely imbalanced. In particular, it was assumed that it
is always possible to achieve load balance by sequences
of moves involving only those vertices that are located on
the current boundaries of the partitions, as in the case of
domain decomposition problems. Such assumptions result in
algorithms that privilege locality by design.

However, when load distribution is very irregular, such
algorithms may fail to provide adequate load balance. Load
distribution artifacts may not be compensated if, for instance,
some vertices with very high loads are localized in a small,
strongly coupled, portion of the graph. These vertices will
most likely be kept together by the first levels of the recur-
sive bipartitioning algorithm until, when trying to bipartition
the cluster, the algorithm can only compute bipartitions that
are imbalanced because of the very high granularity of the
vertex loads. Moreover, since the FM algorithm uses vertex
movements and not vertex swaps as in the KL algorithm,
movements of the heaviest vertices can never be considered.
Moving a heavy vertex out of its slightly overloaded partition
may result in heavy overload of the destination partition, as
well as leaving its original partition drastically underloaded.

To address this problem, a new load imbalance reduction
algorithm has been implemented in SCOTCH. It is activated
when the load imbalance ratio of the current k-way partition
at some uncoarsening level is above the prescribed threshold.
Based on the discussion above, this current partition is as-
sumed to preserve locality. The main loop of the algorithm
considers all vertices in descending weight order. If the
considered vertex fits in its current destination partition, it
remains there. If the vertex causes its destination partition
to be overloaded, possible alternate destination partitions are
tried out in target domain recursive bipartition tree order. The
neighboring domain of the last bipartition level is tried first,
then the two sons of the neighbor domain in the second-
last level, and so on. Therefore, closest domains in the target
architecture partitions are tried out first, before farther ones.
This algorithm may increase the communication cut, but only
locally, as far as mapping is concerned. Once a balanced
partition is achieved, communication cost minimization can be
applied, by using k-way FM, so that vertices that have been
placed alone in a distant partition can try to pull neighboring
vertices in their partition so as to reduce the cut locally.

In summary, the algorithms available in the new release
of SCOTCH, and which have been experimented with in this
paper, comprise of: (i) the classical recursive bipartitioning
(or static mapping) method of SCOTCH 5.1 (referred to as
ScotchLLB), (ii) a new k-way multilevel framework for parti-
tioning and repartitioning graphs (referred to as ScotchRe-
fineLLB), and (iii) a specific algorithm for handling graphs
with irregular load distributions and localized concentration
of vertices with heavy loads.

IV. CASE STUDIES

We compare the performance of different load balancing
strategies using three micro-benchmarks:

kNeighbor: kNeighbor is a communication intensive bench-
mark in which each object exchanges a message of size
8 KB with fourteen other objects in every iteration. The
IDs of these objects differ from that of the given object by
{-35,---,-5,5,--+,35}. Each object is assigned a random
computational load with the difference between maximum and
minimum load across all objects being 8 times.
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Ib_test: Ib_test is another communication-bound benchmark
which involves communication with randomly selected ob-
jects. On an average, an object exchanges 32 KB of data with
ten objects which are selected uniformly at random. In each
iteration, time spent in computation per object varies from
0.1 to 1 millisecond. This benchmark differs from kNeighbor
in two aspects: 1. The number of neighbors each object
communicates with is not fixed, and 2. The set of objects
cannot be subdivided into groups that do not communicate
with one another.

stencildd: stencil4d is representative of the communication
pattern in MILC [24], a Lattice QCD code. In this computa-
tionally intensive benchmark, each object is assigned a block
of 16 x 16 x 16 x 16 doubles. In each iteration, every object
exchanges boundary data with its eight neighbors (two in each
direction). This results in exchange of multiple messages of
size 32 KB each. Once the data exchange is done, each process
computes a 9-point stencil on its data. Load imbalance is
introduced by having each object do the stencil computation
a random number of times within each iteration.

The experiments were run on Intrepid and Ranger. Intrepid
is a 40,960-node Blue Gene/P installation at the Argonne
National Laboratory. Each node in Intrepid consists of four
850 MHz PowerPC cores. The principal interconnect for point-
to-point communication in this system is a 3D torus. Each link
on the torus offers a bi-directional bandwidth of 850 MB/s.
The experiments were run in VN mode using all four cores
per node. Ranger is a SUN constellation cluster at the Texas
Advanced Computing Center consisting of 3, 936 nodes. Each
node in Ranger is a 16-way SMP running at 2.3 GHz and
has 32 GB of memory. The system is connected via a full-
CLOS Infiniband interconnect providing 1 GB/s of peer-to-
peer bandwidth.

A. Evaluation of SCOTCH-based load balancers

We implemented two load balancing strategies in
CHARM++ that use graph partitioning methods available in

Comparison of the average execution time per step for different load balancers (kNeighbor benchmark on Intrepid)

ScoTtcH. The first one, ScotchLB, does a fresh partitioning
and assignment of objects to processors ignoring the previous
mapping. Two flavors of the SCOTCH static mapping method
(Section III-A) can be used for this:

1) STRAT_QUALITY - Preference is given to obtaining the
best edge cut.

2) STRAT_BALANCE - Preference is given to maintain-
ing computational load balance as described in Sec-
tion III-C.

For both of these, we also vary the imbalance ratio (described
in Section IV-B) from 1% to 15% and use data from the
experiment with the minimum application execution time for
the various plots. The second load balancer, ScotchRefineLB,
uses repartitioning methods (Section III-B) to refine the ini-
tial partitioning and mapping created by ScotchLB. To this
end, ScotchLB is invoked once, when program execution
begins, followed by several calls to ScotchRefineLB. As in
the case of ScotchLB, we use both STRAT QUALITY and
STRAT_BALANCE with different values for the imbalance
ratio and use the experiment with the minimum application
execution time for reporting the results.

The performance of different load balancing strategies is
evaluated on the basis of the following metrics:

1) Execution time per step for the application, which is the
best indication of the success of a load balancer.

Time spent in the load balancing strategy. This, along
with the frequency of load balancing, determines
whether load balancing is beneficial for performance.
Number of objects migrated, which signifies the amount
of data movement resulting from load balancing and
hence the communication costs associated with it.
Reduction in inter-processor communication (or the ratio
of remote to local communication)

2)

3)

4)

Figures 2 and 3 present a comparison of the execution time
per iteration for kNeighbor using different load balancers on
Intrepid and Ranger respectively. Unless otherwise specified,
the number of objects is eight times the number of processors
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for all the experiments. No LB refers to no load balancing
being performed and the runtime does a static mapping of all
objects to processors, attempting to assign equal number of
objects to each processor. For experiments involving MetisLB,
both recursive bipartitioning and k-way multilevel partitioning
were tried and the better of the two (lower application execu-
tion time) was used for reporting results.

Looking at Figure 2, we observe that the load balancers
based on graph partitioners, METIS and SCOTCH, perform
considerably better than the other load balancers and when
no load balancing is done (No LB). This is in agreement
with our expectations because kNeighbor is a communication
intensive benchmark with nicely discernible and sparsely
connected partitions. In particular, at 512 cores of Intrepid,
ScotchRefineLLB, which has the best performance among the
graph partitioners, decreases the execution time by 77% as
compared to RefineCommLB. It is to be noted that the time
per step, when using other sub-optimal load balancers, reduces
at 2048 cores (512 nodes, one midplane) because torus links
become available and communication is automatically opti-
mized. Hence, the execution time reduction is smaller (26%)
for ScotchRefineLB versus RefineCommLB at 8192 cores. The

results are different on Ranger (Figure 3) where GreedyLB,
RefineLB and RefineCommLB give worse execution times
compared to when no load balancing is performed. The benefit
(reduction in execution time per step compared to No LB)
from using ScotchLB and ScotchRefineLB remains constant
around 36% across runs on different number of cores.

Figure 4 demonstrates the capability of graph partitioning
based load balancers in mapping communicating processes
onto the same processor. This figure compares the ratio of
remote to local communication for different load balancers on
Intrepid and Ranger. We note that irrespective of the system
size, METIS and SCOTCH based load balancers succeed in
maintaining this ratio close to one i.e. restricting half of total
communication to the local processor. In contrast, for other
load balancers, this ratio is at least an order of magnitude
higher resulting in excess of remote communication, adversely
affecting the performance. Ideally all communication should
be local to the processors and hence this ratio should be close
to 0. However, the communication graph is chordal and the
distribution of outgoing links is such that, with respect to
the size of the partitions, half of the outgoing links have to
be remote, and hence these results. The locality preserving
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features of graph partitioning algorithms help, as it is most
likely that, the partitions will be evenly spread as “donut
slices” on the chordal graph.

Figure 5 compares the overhead incurred in load balancing,
specifically, the time spent on load balancing strategies. We
find that, as the number of cores increases, the strategy time
for all the load balancers increases. RefineLB is the fastest
among all and SCOTCH-based load balancers incur a higher
cost over some of the other load balancers. This is, however,
offset by the better performance the application achieves when
using them and with an intelligent choice of the load balancing
frequency, graph partitioning based load balancers can be
used to our advantage. Note that the time spent in comput-
ing decisions is smaller for ScotchRefineLB as compared to
ScotchLB. This is because, in spite of the additional work, the
direct k-way multilevel framework is more efficient than a set
of multilevel recursive bisections. However, the difference is
small for smaller graphs as the k-way process quickly stops
computing the initial k-way partition by means of the classical
multilevel DRB scheme.

Figure 6 shows the number of objects migrated for different
load balancers. Fewer migrations lead to less communication
and hence this is a desired outcome of load balancing. The
refinement load balancers, which includes RefineLB, Re-
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fineCommLB and ScotchRefineLB, are successful in reducing
the number of migrations considerably when compared to
strategies that map the objects to processors from scratch.
For runs conducted on Intrepid, the refinement load balancers
reduce the number of migrations by orders of magnitude
when compared to other strategies. GreedyLB, MetisLB and
ScotchLLB end up migrating almost all objects in the applica-
tion. RefineCommLB moves next to nothing but does not give
the best load balance. ScotchRefineLB, however, moves 50
to 70 times fewer objects than MetisLB and ScotchLB and
still gives performance very similar to both (see Figure 2).
For a given number of cores, the number of migrations for
refinement load balancers are much higher on Ranger than
on Intrepid. This might be, in part, because communication
is better optimized on the Blue Gene/P torus than on Ranger.
Even so, ScotchRefineLB migrates 2-3 times fewer objects
than MetisLB and ScotchLB (which migrate almost all of
them) and also gives good performance.

We present only the application execution times for the
other two benchmarks, 1b_test and stencildd, using different
load balancers in Figures 7 and 8 respectively. For 1b_test, we
observe that the load balancers based on graph partitioning
reduce the execution time by 13-19% compared to the default
case (No LB). ScotchLB gives the best performance among
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all the load balancers at 1024 cores. It is to be noted that
the gains obtained for Ib_test are smaller in comparison to
those for kNeighbor. We attribute this to the randomness of
the communication graph in lb_test which makes it harder to
partition into load balanced subsets while minimizing the cut.

Figure 8 presents execution times for stencil4d comparing
the different load balancing strategies. The performance results
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for this benchmark are considerably different from kNeigh-
bor and lb_test as stencil4d is a computationally intensive
benchmark. As shown in Figure 8, most of the load balancers
behave similarly and reduce the execution time by 50 to 65%
compared to No LB. SCOTCH-based load balancers, which
allow for an input parameter for load imbalance ratio, outper-
form the other load balancers for this benchmark. ScotchL.B
gives 7-11% better performance compared to MetisLB. These
results demonstrate the robust nature of SCOTCH-based load
balancers, which irrespective of the nature of the application,
can be tuned to obtain good results. It also shows that graph
partitioning algorithms specifically designed for mapping ob-
jects to processors give better performance than using generic
graph partitioners, such as METIS, for this purpose.

B. Strategies to handle different classes of applications

The end user can assist the partitioning strategies in
ScoTcH in making good load balancing decisions by indi-
cating whether computational load balance or minimizing the
communication cut is more important for an application. The
user can pass a parameter to SCOTCH which indicates the
percentage of load imbalance permissible for an application.
If the application is computation-bound, this value should be
set to a low number; on the other hand, if it is communication-
bound and can tolerate some degree of computational load
imbalance, then this parameter can be set to a higher value.

Figure 9 shows the execution time per step of kNeighbor for
different values of this parameter when used within ScotchLB
and ScotchRefineLB. kNeighbor is communication-intensive
and hence, a value that permits between 8 to 12% imbalance
gives the best results. However, if we look at Figure 10,
which presents execution times for stencil4d, a benchmark
affected more by computational load imbalance than inefficient
communication, best performance is obtained when strict load
balance is ensured (1% imbalance permitted).

Section III-C presented a new algorithm for balancing
applications that have irregular load imbalance and local-
ized concentrations of vertices with heavy loads, a scenario
which is not handled efficiently by recursive bipartition-
ing. This is yet another technique to give more importance
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to balancing computational load than trying to achieve a
minimal cut. Figure 11 presents a comparison of the de-
fault scheme (STRAT_QUALITY) versus this new scheme
(STRAT_BALANCE) that attempts to achieve better load bal-
ance by considering all vertices and not only the ones in
the neighborhood. Figure 11 shows that STRAT_BALANCE
consistently outperforms STRAT_QUALITY for stencil4d. The
performance gains are in the range of 10-15%. These results
are in accordance with our expectation for a computationally
intensive benchmark, such as stencil4d, for which balancing
of load should be preferred over optimizing communication.
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versus STRAT_BALANCE strategy within ScotchLB (stencil4d on Intrepid)

As noted earlier, all the results in Section IV-A were
obtained by running both flavors (STRAT_QUALITY and
STRAT_BALANCE) and different values of the percent imbal-
ance allowed and the run with the minimum execution time
for a given number of cores was chosen.

C. Effect of application features on performance benefits

The previous section described advanced features in
SCOTCH and their ability to handle different classes of parallel
applications. In this section, we discuss the impact of applica-
tion characteristics on the performance benefits obtained from

load balancing. One relatively straightforward conclusion is
that as the amount of communication in an application is
increased, load balancing strategies, such as graph partitioning,
that take the communication into account, give increasingly
larger benefits. Figure 12 plots the average execution time per
step of kNeighbor for different message sizes. As we increase
the message size from 2 KB to 16 KB, the improvement
in the time per step using the graph partitioning based load
balancers over RefineLB increases from 30% to 79%. Hence,
graph partitioning based load balancers should definitely be
used with applications that are communication-intensive.
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The ratio of number of objects in the application graph to
the number of processors can also affect the quality of load
balance. When work in an application is divided into more
number of fine-grained objects, it gives additional flexibility
and control to the load balancing strategy to migrate objects
around. This should help all load balancers, though, by dif-
ferent amounts depending on how well they can exploit this
degree of freedom. Figure 13 presents the performance of
stencil4d when using different load balancing algorithms for
different values of the average number of objects per core (the
total amount of work across all processors was kept constant).
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When no load balancing is done, as the number of objects is
increased, heavier objects are broken down into smaller ones
and the default mapping by the runtime improves because of
more numbers and finer granularity. Different load balancing
strategies begin with a worse solution than is possible at two
objects per core but all of them converge towards similar better
performance at 16 objects per core. The only exception is
ScotchLB that gives its best results to begin with and hence,
does not shown any improvement as the number of objects is
increased. It is advisable to choose a suitable ratio of objects
to processors which creates a balance between good load
balancing and avoiding overheads of excessive fine-graining.

V. RELATED WORK

The problem of load balancing (also known as multipro-
cessor scheduling) of computational tasks is known to be NP-
hard [25]-[27]. The load balancing of n jobs on to p processors
is strongly NP-hard [25], [28]. However, solutions that can
bring the load imbalance (ratio of maximum to average load)
within 5-10% of the optimal are still desirable. Load balancing
is a much studied problem and algorithms and heuristics from
various fields have been applied to it, ranging from prefix sum,
recursive bisection, space filling curves to work stealing and
graph partitioning.

Graph partitioning has been used for static load balanc-
ing of parallel applications for some time now [8]-[10].
METIS [7], Chaco [6] and SCOTCH [5] are some popular
graph partitioning libraries. ParMETIS and PT-SCOTCH are
the parallel versions of METIS and SCOTCH respectively
that were developed to handle the rapidly growing sizes of
parallel applications and machines. Parallel algorithms help
reduce the time and memory requirements for partitioning
large meshes/graphs.

With the emergence of large-scale heterogeneous architec-
tures and development of complex multi-physics applications,
the challenge has shifted towards developing algorithms and
techniques for topology-aware, scalable and dynamic load
balancing. Zoltan is one of the few general frameworks that
supports dynamic load balancing of applications [12], [13]. It
provides a suite of load balancing algorithms including parallel
graph partitioning and also allows use of external libraries
such as ParMETIS. However, it depends on the application
to provide a cost model for the loads and the communi-
cation graph. Other frameworks such as DRAMA [29] and
Chombo [30] provide load balancing capabilities for specific
classes of parallel applications: finite element methods and
finite difference methods respectively.

CHARM++ provides a framework similar to the Zoltan
toolkit with inbuilt load balancing strategies and the option
to deploy external libraries that provide load balancing al-
gorithms [14]. The CHARM++ runtime does not depend on
the application to provide the object graph, the cost models
for which might be inaccurate. The runtime uses automatic
instrumentation to obtain the loads and the communication
graph which is used by the load balancing framework. We
believe that this paper presents one of the first analyses of

using graph partitioning in a measurement-based dynamic
load balancing framework. The added benefits of interconnect
topology awareness [31] and hierarchical load balancing [32]
schemes implemented in CHARM++ can also be exploited in
conjunction with graph partitioning and will be discussed in
future work.

VI. SUMMARY AND NEXT STEPS

This paper represents an attempt at exploiting graph map-
ping and repartitioning methods for load balancing in paral-
lel computing. Combined with measurement-based dynamic
load balancing capabilities of an adaptive runtime system, a
powerful technique for automatic balancing of applications is
created. We present new algorithms, implemented in SCOTCH,
such as k-way multilevel repartitioning and a load imbalance
reduction algorithm that favors load balance over minimizing
the edge cut. This is especially useful for computation-bound
applications with irregular load distributions.

ScoTCH-based load balancers improve performance for dif-
ferent benchmarks by 20-70% over the existing load balancers
in CHARM++. They also reduce the number of migrations,
by several orders of magnitude in some cases, which should
reduce the associated communication costs. ScotchRefineLB
migrates 50 to 70 times fewer objects than MetisLB on
Intrepid. For applications with irregular load distributions,
ScoTcH-based load balancers outperform METIS by 7-11%.
This shows that graph partitioning algorithms specifically
designed for mapping objects to processors give better perfor-
mance than using generic graph partitioners, such as METIS,
for this purpose.

Future work involves developing an intelligent load balanc-
ing framework that can choose the best strategy (comprehen-
sive versus refinement, favoring load balance versus minimiz-
ing the edge cut and choosing a good value for the allowed
imbalance) depending on the computation and communication
characteristics of an application. Another area of exploration
is the use of architecture-aware mapping strategies available
in SCOTCH for interconnect topology aware load balancing.
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